CENTRAL CALIFORNIA AIR QUALITY RESEARCH

Evolving Science in Central California Why do we need air quality studies?

John G. Watson (johnw@dri.edu)

Desert Research Institute

University of Nevada

Philip M. Roth
Envair
San Anselmo, CA

Objectives

- Review what we've learned from 30 years of central California air quality studies
- Identify contributions from these studies to the advancement of air quality science
- Provide some perspective on how to extract the greatest value from central California air quality experiments
- Specify some of the scientific issues that need to be addressed in the future

Steps in the scientific method

- 1. Identify and quantify the problem
- Formulate hypotheses about the causes of the problem
- 3. Design and conduct experiments to test hypotheses
- Evaluate effectiveness of emission reduction measures
- 5. Implement control strategies to reduce the problem
- 6. Measure changes to evaluate the effectiveness of strategies
- 7. Go to step 1

Limitations of the method for air quality studies

- Measurement and modeling technology is limited, but continually improving
- Environmental data is inherently noisy and uncertain
- Hypotheses are based on pre-conceived notions
- Atmospheric processes are nonlinear
- Control strategies have unintended consequences
- Real-world emissions differ from estimates
- Study resource requirements are high

Problem: O₃, PM₁₀ and PM_{2.5} are too high

What are PM₁₀ and PM_{2.5}?

Major field studies

- 1970: Project Lo-Jet (identified summertime low-level jet and Fresno eddy)
- 1972: Aerosol Characterization Experiment (ACHEX, first TSP chemical composition and size distributions)
- 1979-1980: Inhalable Particulate Network (first long-term PM_{2.5} and PM₁₅ mass and elemental measurements in Bay Area, Five Points)
- 1978: Central California Aerosol and Meteorological Study (seasonal TSP elemental composition, seasonal transport patterns)
- 1979-1982: Westside Operators (first TSP sulfate and nitrate compositions in western Kern County)
- 1984: Southern SJV ozone study (first major characterization of O₃ and meteorology in Kern County)
- 1986-1988: California Source Characterization Study (quantified chemical composition of source emissions)
- 1988-89: Valley Air Quality Study (first spatially diverse, chemical characterized, annual and 24-hour PM_{2.5} and PM₁₀ seasonal
- Summer 1990: San Joaquin Valley Air Quality Study/Atmospheric Utilities Signatures
 Predictions and Experiments (SJVAQS/AUSPEX, first central California regional study
 of O₃ and PM_{2.5})
- Winter 1995: CRPAQS Pilot Study (IMS95, first sub-regional winter study)
- December 1999 to February 2001: CRPAQS and CCOS (first year-long, regional-scale effort)
- December 1999 to present: Fresno Supersite (first multi-year experiment with advanced monitoring technology

Inhalable Particulate Network 1979-80 measured high concentrations

TABLE 5.3.1

RANGES OF TSP, IP AND FP

ANNUAL ARITHMETIC AVERAGE AND MAXIMUM CONCENTRATIONS

BETWEEN SITES WITHIN URBAN AREAS

Urban Area	No. of Sites	Aver		ug/m ³ <u>Maximum</u>	IP, Average	ug/m ³ Maximum	Average	ug/m ³ Maximum
Birmingham	4	63 to	114	120 to 313	30 to 58	75 to 140	19 to 32	37 to 52
San Francisco	3	49 to	79	103 to 269	25 to 35	81 to 113	13 to 18	60 to 82
Buffalo	2	87 to	98	165 to 191	52 to 63	111 to 134	27 to 33	58 to 70
Los Angeles	2	73 to	161	146 to 392	46 to 92	99 to 200	25 to 37	72 to 109
Philadelphia	2	49 to	57	137 to 161	37 to 48	134 to 146	23 to 32	99 to 112
Minneapolis	2	51 to	76	126 to 221	30 to 42	61 to 105	14 to 17	44 to 47
All Sites	19	39 to	161	90 to 392	24 to 92	58 to 200	13 to 37	44 to 112

Source characterization studies (1986-88) provided "fingerprints" for different emitters

Fresno Paved Road SOIL: PM10

Motor Vehicle MOVES2: PM2.5

Vegetative Burning, Bakersfield Cordwood Majestic Fireplace: PM2.5

Crude Oil Combustion Santa Fe Crude Boiler: PM2.5

VAQS (1988-89) revealed large contributions from ammonium nitrate during winter and crude oil combustion in Kern county

Calc./Meas. PM10: 132+-9/166+-8 ug/m3

SOURCE CONTRIBUTIONS TO 24-HOUR PM10 12/11/88 at Fellows

Calc./Meas. PM10: 126+-6/120+-6

SOURCE CONTRIBUTIONS TO 24-HOUR PM10 12/11/88 at Fresno

Calc./Meas. PM10: 113+-10/90+-5

SOURCE CONTRIBUTIONS TO 24-HOUR PM10 12/11/88 at Bakersfield

Calc./Meas. PM10: 194+-12/235+-12

SJVAQS/AUSPEX (1990) showed where and when NO_x or VOC reductions would reduce O_3

SJVAQS/AUSPEX (1990) showed summertime diurnal variations with high ozone

CRPAQS Pilot Study (IMS95, Winter 1995) showed wintertime diurnal distribution

CRPAQS Pilot Study (IMS95, Winter 1995) showed cooking as well as wood burning contributions

CRPAQS Pilot Study (IMS95, Winter 1995) showed higher wind speeds above a shallow surface layer

CRPAQS Findings

Dense sampling network showed that carbon was highest in cities during winter

CRPAQS Findings

Dense sampling network showed that nitrate was high in all of SJV during winter

CRPAQS Findings Wood smoke markers were highest in cities

Levoglucosan Concentrations (ng/m3)							
	Annual Avg	Winter Avg*					
FEL	6	26					
CHL	7	32					
YOSE	9	38					
EDW	12	52					
OCW	14	58					
HELM	19	81					
PIXL	19	82					
ANGI	23	98					
COP	32	138					
BAC	49	209					
BTI	50	215					
SNF	57	244					
SJ4	58	247					
S13	63	269					
LVR	68	291					
FEDL	75	323					
M14	101	26 32 38 52 58 81 82 98 138 209 215 244 247 269 291 323 433 521 551 868					
FRS	121	521					
SDP	128	551					
FSF	202	868					

^{*} Predicted concentration based on mass concentration measurements

CRPAQS Findings Advanced air quality measurement science Fast time response instruments

CRPAQS Findings Observed vertical exchange soon after sunrise at Fresno

CRPAQS Findings

Verified formation and accumulation aloft with Angiola tower

CRPAQS Findings Ultrafine particles come from primary emit

Ultrafine particles come from primary emitters and form in the atmosphere

Other CRPAQS Scientific Findings

- Nitrate formation not limited by ammonia
- Sluggish surface winds do not preclude transport throughout valley at night
- No single cause of high PM_{2.5} levels. All emitters must participate in control strategies
- Often wintertime offshore flow from SJV toward Bay area
- PM removal by fog exceeds PM formation by fog
- More to come

Is this the last Central California Air Quality Study?

- What are effects of changing meteorology and climate on PM_{2.5} and O₃?
- How important are off-cycle and high emitting engines?
- What is the influence of ships, trains, and other goods transport?
- How much is contributed by transport across the Pacific Ocean?
- How well did our pollution control measures work?
- Go back to step 1